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Abstract. In this paper we introduce a modified lattice Boltzmann model (LBM) with the capability
of mimicking a fluid system with dynamic heterogeneities. The physical system is modeled as a one-
dimensional fluid, interacting with finite-lifetime moving obstacles. Fluid motion is described by a lattice
Boltzmann equation and obstacles are randomly distributed semi-permeable barriers which constrain the
motion of the fluid particles. After a lifetime delay, obstacles move to new random positions. It is found
that the non-linearly coupled dynamics of the fluid and obstacles produces heterogeneous patterns in fluid
density and non-exponential relaxation of two-time autocorrelation function.

PACS. 47.11.+j Computational methods in fluid dynamics – 05.70.Ln Nonequilibrium and irreversible
thermodynamics

1 Introduction

Slow relaxation to local equilibrium is a hallmark of com-
plex system behaviour, with many examples in physics,
material science, and biology [1]. From a many-body point
of view, the emergence of long-time relaxation seems to be
related to the gradual confinement of the system in lower-
dimensional regions (‘slow’ manifolds) of phase-space, sur-
rounded by isolating barriers of increasing amplitude as
the temperature is decreased (or density increased) [2].
Within this picture, long-time relaxation is often associ-
ated with the appearance of space-time heterogeneities,
which can be tentatively attributed to self-trapping ef-
fects, i.e. molecules get trapped into ‘cages’ formed
by high-density aggregations of other groups molecules.
While the landscape picture necessarily calls for many-
body investigations (molecular dynamics, Monte Carlo [3]
and various types of lattice-‘glasses’ [4], for the case of
glasses), dynamic heterogeneities can also be interpreted
in terms of mutual interactions between fluid molecules
of different mobilities [5]. If such a picture is accepted,
it is then natural to attempt a description in terms
of much simpler effective single-body (mean-field) ap-
proaches. This is precisely the conceptual framework of
the present work.

We develop a mesoscopic model of dynamically het-
erogeneous fluids based on the lattice Boltzmann equation
(LBE). LBE is a minimal kinetic equation describing styl-
ized pseudo-molecules evolving in a regular lattice accord-
ing to a simple local dynamics including free-streaming,
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collisional relaxation and (effective) intermolecular inter-
actions [6]. LBE has proven extremely successful for a
variety of complex flows, but its applicability to disor-
dered fluids with long-time relaxation appears more prob-
lematic [7]. A crucial ingredient to produce dynamic het-
erogeneities is (dynamic) geometrical frustration, i.e. the
introduction of constraints which reduce the phase-space
available to the fluid system. To model these effects, the
dynamics of the LBE molecules includes an interaction
with space-time dependent obstacles hindering their mo-
bility. As we shall see, the coexistence of ‘slow’ (the ob-
stacles) and ‘fast’ (LBE molecules) makes the dynamics
of the present model depart significantly from simple fluid
behavior.

2 The model

In the present paper, we use a modified lattice Boltzmann
equation. Standard LBE with a single relaxation time [8]
reads as follows (time-step made unit for simplicity):

fi(r, t)− fi(r− ci, t− 1) = −ω [fi − fe
i ] (r− ci, t− 1) (1)

where fi(r, t) ≡ f(r,v = ci, t) is a discrete distribution
function of particles moving along the direction i with
discrete speed ci. The right-hand side represents the re-
laxation to a local equilibrium fe

i in a time lapse of the
order of ω−1.

The equilibrium distribution functions fe
i are ex-

pressed as series expansions of the Maxwellian distribu-
tion function, up to second order with respect to the local
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Fig. 1. Schematic representation of dynamical role of obstacles
during propagation of distribution functions.

velocity u [9]:

fe
i = ρwi

[
1 +

u · ci

c2
s

+
uu · (cici − c2

sI
)

2c4
s

]
. (2)

The local density ρ = ρ(r, t), as well as the local veloc-
ity u which enter equation (2), are calculated from the
distribution functions as follows:

ρ =
∑

i

fi, (3)

u =
1
ρ

∑
i

fici. (4)

wi is a set of weights normalized to unity, cs the lattice
sound speed, and finally, I stands for the unit tensor. In
the following, we shall refer to a one-dimensional lattice
of size L with ci = −1, 0 + 1 and cs = 1/

√
3.

We generalize the above equation (1) as follows

fi(r, t) −
[
1 − p(r +

ci

2
, t − 1)

]
fi(r, t − 1) =

p(r − ci

2
, t − 1)

[
fi(r − ci, t − 1)

− ω [fi − fe
i ] (r − ci, t − 1)

]
. (5)

The variables p(r± ci

2 , t) live on the lattice links and vary
in space and time (non-quenched disorder [10]). We choose
them in the form of binary fields taking only the values
p = 1 and p = pt with 0 < pt < 1. Links with p = pt

act as semi-permeable obstacles which control the prop-
agation rate between neighboring sites in a way which
preserves the total density conservation. Figure 1 illus-
trates in a pictorial way the role of obstacles. Obstacles
are characterized by their permeability, pt, and concentra-
tion, c = O/L, O being the number of obstacles, which is
kept fixed in time.

The dynamics of the obstacles is the following. At time
t = 0, the number of obstacles, O, is chosen and their
positions are randomly selected. At subsequent times tn,
n = 1, 2, ..., where

t1 = τ0

tn+1 = tn + τ(tn)

τ(tn) = int

(
τ0e

1
2ρ0

(
2

|m(tn)−2|−1
))

(6)

the obstacles are shifted rightward to new randomly cho-
sen positions rj(tn+1) = rj(tn) + r′j(tn+1), j = 1, ..., O,
where r′j(tn+1) = int(s) + 1, s being a random number
drawn from an uniform distribution in the range [d

2 , 3d
2 ]

and d = L
O is the mean inter-obstacle distance. In the

above, int(s) denotes the integer part of the variable s.
The motion of each obstacle can be seen as a continu-
ous time random walk [11]. In equations (6) τ0 is the first
lifetime and the quantity

m(tn) = (ρmax(tn) − ρmin(tn))/ρ0 (7)

is the relevant order parameter. Here, ρmax(tn)
and ρmin(tn) are the maximum and minimum val-
ues of fluid density at time tn, respectively, and ρ0 is
the average fluid density. Non zero values of m are the
prime indicators of departure from ideal fluid behavior
(see below). The quantity τ0 has to be generally much
larger than the time scale of fluid motion so as to
characterize obstacles as the slowly moving species of
particles. The dependence of τ on the order parameter m
is intended to slow down the dynamics of obstacles in
the presence of density contrasts (non zero values of m).
Indeed, in the expression of τ(tn) in (6) it appears a
singularity at m = 2. The reason is the following. We
assumed that, on the average, ρmax − ρ0 � ρ0 − ρmin and
later numerically verified this assumption to be correct.
Since it must be ρmin ≥ 0, this means that in the limit
ρmin → 0 (ρmax → 2ρ0), namely m → 2, the lifetime of
the obstacles must diverge, τ(tn) → +∞.

In moving obstacles we have taken into account the pe-
riodicity of the lattice. When a link is already occupied,
the moving obstacle is shifted to the nearest neighbor link.
The fact that obstacles move rightwards has no effect on
the overall fluid dynamics, which depends only on the po-
sition of obstacles, and not on their motion. The equation
of motion of the obstacles is:

p(r + r′, tn+1) = p(r, tn), n = 1, 2, ... (8)

where the distance r′ has been previously defined. Equa-
tion (8) is coupled to equation (5) via τ(tn), which depends
on density through the order parameter m = m(ρ).

Before proceeding further, a few distinguished limits
in the phase-plane pt − c are worth a brief comment:

– Fluid limit: Along the lines c = 0 (obstacle-free) and
pt = 1 (transparent obstacles) the system behaves like a
standard LBE fluid.

– Slow-fluid limit: Along the line c = 1, the system
behaves like a standard LB fluid, only with a rescaled
speed ptu. Thus, as pt → 0, this slow fluid goes smoothly
into the ‘frozen’ limit represented by the corner (pt =
0, c = 1), where the system is frozen to its initial configu-
ration.

– Arrest limit: Along the line pt = 0 the system is li-
able to develop density accumulations in a finite time at
the locations where the obstacles reside. The actual onset
of these density pile-ups depends on the lifetime of the
traps, as well as on their concentration. It is in fact clear
that dilute obstacles with short lifetimes permit the sys-
tem to release density pile-ups, thereby avoiding strong
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Fig. 2. Left panel: The order parameter m as a function of pt for different concentrations c = 0.5 (•), 0.78 (◦). The straight
line has slope −3/2. Right panel: The order parameter m as a function of c for different values of pt = 0.7 (•), 0.9 (◦).

density accumulations. In actual practice, an ‘arrest line’
of the form cA = cA(pt, τ0) marks the upper value of the
concentration leading to configurations without accumula-
tion. Intuitively, cA is an increasing function of pt and τ0.

The macroscopic limit of the present model remains
an open question mainly because the obstacle populations
is generally not smooth, so that a standard Chapman-
Enskog analysis is difficult to apply. Here we only present
a few remarks which apply to the limit pt → 1. To leading
order in the parameter 1−pt, the main features of density
profiles can be explained in terms of the following modified
continuity equation:

∂tρ + ∂α(pρu) = 0. (9)

By writing the above as:

∂tρ + ∂α(ρu) = −ρu∂αp − (p − 1)∂α(ρu) (10)

we recognize two extra compressibility terms on the right
hand side. The limit p = 1 annihilates both extra com-
pressibility contributions, as it must be, since this is
the standard LBE situation. The case p = pt every-
where (c = 1), leads again to a standard LBE, only with
a rescaled speed u → ptu, hence no effective extra-
compressibility. Genuinely extra-compressibility is there-
fore associated to spatial changes of the permeability
field p(r, t): ∂αp �= 0 (this derivative must be intended
in the sense of distributions, since p(x, t) is generally not
smooth).

3 Numerical results

We performed a series of numerical simulations on a lat-
tice with L = 1024 grid-points and ω = 1.5. We found
that results are not dependent on ω, which was var-
ied in the range [1, 1.7], corresponding to a local colli-
sional relaxation timescale τc ∼ 1/ω approximately in
the range [0.58, 1] in time step units. The parameter τ0

was fixed at τ0 = 50. The initial condition is ρ(r) =
ρ0 (1 + ξ(r)) where ξ(r) is a random perturbation uni-
formly distributed in the range [−0.1 : 0.1] and ρ0 = 1.

As a first task, we determine the phase-diagram of our
model in the pt−c plane. We spanned the pt−c plane and
found that departures from ideal fluid behavior (m �= 0)
are observed for every value of (pt, c) with pmin < pt < 1
and 0 < c < 1. The limiting value (arrest value) pmin indi-
cates the lowest permeability, below which the simulation
is disrupted by excessive density pile-up.

As expected, the arrest value pmin decreases with
decreasing c: We found pmin � 0.52 for c = 0.5 and
pmin � 0.61 for c = 0.78. The behaviors of m as a function
of pt and c are shown in Figure 2. In the vicinity of pmin,
we observe a power-law behavior m ∼ (pt − pmin)−a with
a ∼ 3/2. Away from pmin, m grows like (pmax(c) − pt)b,
with b ∼ 1/2, which is essentially a mean field theory ex-
ponent, and pmax(c) → 1 as c → 1. The dependence of
the order parameter on c at fixed pt is non-monotonic,
with a kink around c ∼ 0.02 and a sharp collapse towards
the ‘slow-fluid’ limit, c = 1, which appears to be reached
in a highly non-perturbative way. To be noted that even
a single obstacle c = 1/L ∼ 0.001 is sufficient to gener-
ate sizeable non-zero values of the order parameter m. In
summary, these results indicate that fluid behavior is re-
covered smoothly, but shows very small resilience towards
non-zero values of the obstacle concentration c and imper-
meability 1 − pt.

We also considered the dependence of the order pa-
rameter m on the lifetime τ0. Figure 3 shows the behavior
of m as a function of the parameter τ0 in the case with
c = 0.78, pt = 0.7. It appears that m decays with in-
creasing τ0 to reach a constant value m(∞). The reason
of this behavior is the following. In the limit of static dis-
order (τ0 → ∞) density profiles are flat among obstacles
and show sharp contrasts across them. Density accumu-
lations are prevented in the long time limit by the flow
which flattens density among obstacles. When reducing τ0

it is more difficult for the flow to smooth density pro-
files and the motion of obstacles produces larger density
contrasts in the system as obstacles are shifted thereby
causing m to increase. In the limit of rapid motion of ob-
stacles (τ0 → 0) it happens that density contrasts are so
steep that m diverges. Further simulations with pt in the
range [0.7, 0.9] indicate that that m(∞) is close to the
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Fig. 3. The order parameter m as a function of τ0 for c = 0.78
and pt = 0.7. The full line is a guide to the eye and represents
equation (11).

value (1− pt)/((1+ pt)/2), the latter being an estimate of
the density variation across a single obstacle based on the
continuity equation (9). It is interesting to observe that
the dynamic component of the order parameter m obeys
a scaling law of the form

m(τ0) − m(∞)
m(∞)

=
a

(τ0 − τ0crit)1/2
(11)

again with a mean-field like exponent 1/2, a and τ0crit

being two parameters which depend on pt.
We next turn to the analysis of the dynamics of the

model, notably through a study of the time and space
correlation functions. To this purpose, we choose c = 0.78,
pt = 0.7 and τ0 = 50 in order to analyse a region of
the phase diagram with clear departures from ideal fluid
behavior (m � 0.75, see Figs. 2–3).

We verified that the resulting motion of obstacles can
be described in terms of a directed random walk. Indeed,
we have computed the time evolution of the distance D
travelled by obstacles defined as

D(tn) =

∑0
j=1 rj(tn) − rj(0)

O
. (12)

The quantity D is plotted in Figure 4 as a function of
times tn. From this figure a power law D ∼ t is well visible.
The exponent 1, characterizing the time behavior of D, is
consistent with the fact that the motion of obstacles can
be seen as a directed random walk for which the exponent
is known to be 1. This result confirms that the obstacle
motion is independent on fluid coupling and on obstacle
shifting.

We focused our attention on the two-time density au-
tocorrelation function defined as

h(t, tw) =
〈δρ(r, tw)δρ(r, tw + t)〉r

〈ρ(r, tw)2〉r (13)

where δρ(r) = ρ(r) − ρ0 is the density fluctuation around
its spatial average, 〈...〉r denotes sum over the whole sys-
tem and t > tw. Multiplying two configurations (one at
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Fig. 4. The distance D travelled by obstacles as a function of
times tn. The straight line has slope 1.
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Fig. 5. The density autocorrelation function h(t, tw) as a func-
tion of t for different waiting times tw = 1 (�), 52 (◦), 104 (�),
157 (�), 211 (∗). h(t, tw) is shown also in the case without
obstacles for tw = 211 (•).

time t, the other at tw + t) together site by site is suffi-
cient to produce a satisfactory average of h(t, tw) because,
due to the large number of sites (L = 1024), the above pro-
cedure is equivalent to obtain h(t, tw) from an ensemble
average of the system [12].

The function h(t, tw) is not normalized to unity at
t = 0 due to the definition (Eq. (13)). This definition
is common for correlations of fluctuations (δρ) since small
values of fluctuations at the denominator can give diverg-
ing contributions to the correlation function itself. The
plot for different waiting times is presented in Figure 5.
From this figure, evidence of non-exponential relaxation
is clearly seen, hinting at the presence of long-lived dy-
namical structures. Also, the dependence on the wait-
ing time tw indicates the existence of an underlying non-
equilibrium, non-stationary process. In the case without
obstacles (standard LBE with p = 1 in Eq. (5)) h(t, tw) is
approximately zero (see Fig. 5), as it should be.

Plots of density are shown in Figure 6 in the range
1−500 for a better view. The qualitative behavior is the
same over the whole lattice. The corresponding probability
distribution functions (PDF) are shown in Figure 7. In the
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Fig. 6. Density profiles at different times on a portion of the lattice. At time t = 5000 the profile is shown also in the case
without obstacles (thick line).
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Fig. 7. The probability distribution functions (PDF) of ρ at different times. At time t = 5000 the PDF is shown also in the
case without obstacles (−•−).

initial stage the PDF quickly forgets the initial distribu-
tion and develops two peaks around the initial minimum
and maximum densities 0.9 and 1.1 respectively. The ap-
parent phase separation at time t = 50 is just due to the
effect of obstacles which cause density to accumulate on
some lattice sites. Indeed, as soon as the obstacles are re-
leased this effect tends to fade away. As time unfolds, these
peaks ‘diffuse’ with the twofold result of filling up the gap
at ρ = ρ0 and populating both high and low density tails.
It is interesting to note that the PDF generated in these
processes are not Gaussian, hinting at the presence of (dy-
namic) heterogeneities in the system. In the case without
obstacles density ρ gets constant at value ρ0 (see Fig. 6 at
time t = 5000) giving a single peak at ρ = ρ0 in the PDF
(see Fig. 7 at time t = 5000).

As a further observable, in Figure 8 we plot the density
correlation function:

g(x) =
〈δρ(r + x)δρ(r)〉r

〈ρ(r)2〉r . (14)

From these pictures, the onset of long-range order is well
appreciated. In the case without obstacles g(x) is approx-
imately zero (see Fig. 8 at time t = 5000).

In order to gain further insights into the dynamics of
the density field, we performed a scale-dependent analysis.
Let dρ(r, x, t) = ρ(r + x, t) − ρ(r, t) be the density incre-
ment at a scale x at time t, and define the corresponding
structure functions as:

Sp(x, t) = 〈|dρ(r, x, t)|p〉r , p = 1, 2, ..., 5 (15)

as well as scaling exponents ap via:

Sp(x, t) ∼ Sp(x0, t)
(

x

x0

)ap

, 1 ≤ x0 � L (16)

where x0 = int(d). It is well known that a linear depen-
dence ap = Kp indicates a fractal process of order K
(K = 1 for smooth, differentiable processes, K = 1/2 for
standard diffusion), whereas a non-linear dependence on p
would signal a multi-fractal process instead [13]. Our data
show that Sp(x, t) ∼ xK(t)p, where K(t) is a time-varying
but scale-independent parameter. This suggests that the
density diffusion process is a fractal of dimension K(t),
with K raising in the course of the evolution from 0.08
to the steady value 0.15. This also hints at a hierarchi-
cal organization of density peaks and dips, which emerges
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spontaneously from the non-linear coupling between the
fluid motion and the obstacles dynamics.

The fractal character is more neatly evidenced by
using extended self-similarity [14]. Indeed, in Figure 9
we show the plots of S5(x, t) vs. Sp(x, t) at two times
for p = 1, 2, ..., 5. Data points fall on the straight lines
of slope 5/p, as expected in the case of fractal behavior.
The low values of K(t) indicate that the density redis-
tribution is a sub-diffusive process, i.e. it proceeds more
slowly than Brownian motion [13], as it is expected for
motion in a heterogeneous, disordered background.

4 Conclusions

In summary, we have presented a mesoscopic model of
fluid motion with random dynamical constraints. Fluid
motion is based on a lattice Boltzmann model, whereas
dynamical constraints are implemented via a control field
acting as a penetrable barrier for particle motion along the
links. Despite its simplicity, our model displays some fea-
tures of disordered fluids, namely: i) Onset of non-zero
order parameter (density contrast) with very small re-
silience to non-zero obstacle concentration c and imper-
meability 1− pt; ii) Non-exponential, non-stationary time
relaxation of density correlation functions; iii) Long-range
spatial order, with non-Gaussian PDF’s of the density

distribution, iv) Sub-diffusive dynamics of the density
distribution.

Although no strict correspondence with any specific
physical system can be claimed at this stage, the natural
physical target of our model are fluids in porous media
with a dynamic morphology, nonlinearly coupled to fluid
motion. For the future, we plan to investigate the behav-
ior of the present model for two and three-dimensional flu-
ids. In the long-term, we would also like to model glassy
materials, although this is certainly going to require new
substantial extensions of the simple model presented in
this work.

Illuminating discussions with K. Binder, E. Marinari, G. Parisi
and F. Sciortino are kindly acknowledged.
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